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A Power-Log Utility Model for Pricing Stock-Index Options 

 

Abstract 

 

The Black-Scholes-Merton option pricing model works well for at the money options, but not for 

in the money and out of the money options.  We use investor preferences modeled with a Power-

Log utility function, which is a variation of prospect theory, along with investor perceptions 

about market volatility, to calculate prices for in the money and out of the money stock-index 

options.  The prices from our model are closer to market prices than Black-Scholes-Merton 

prices. 
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A Power-Log Utility Model for Pricing Stock-Index Options 

 

 

Option pricing models such as Black-Scholes (1973) and Merton (1973), do not incorporate 

investor preferences, and that can lead to wide discrepancies between the model price and the 

observed market price for in the money and out of the money options.  Our model incorporates 

investor preferences explicitly with a Power-Log utility function, which is a variation of prospect 

theory, and produces prices for in the money and out of the money S&P500 index call and put 

options that are closer to market prices than those obtained from the Black-Scholes-Merton 

model.  Our method is fundamentally different from, and on a sounder theoretical footing, than 

other models that have been created to improve on B-S-M pricing, since they focus on improving 

the stochastic process that generates asset returns but ignore investor preferences.  In addition, 

for pricing the options we use a very long history of monthly S&P500 returns, 864 months, 

which incorporates the effects of jumps and stochastic volatility observed in equity returns. 

 

The market data we use for S&P500 put and call options, which are European options, is from a 

snapshot of the Schwab website on November 16, 2022, at 2:55 pm Eastern Standard Time in the 

US, for options that expire in 30 days on December 16, 2022.  The bid and ask quotes are live 

quotes.  The S&P500 index value at the time of the snapshot was 3,966.04, its dividend yield 

was 1.75%, and the one-month US treasury yield was 3.81% (www.treasury.gov).  To highlight 

inconsistencies in the B-S-M model, we calculated B-S-M option implied volatilities for selected 

call options, with the bid-ask midpoint as our measure of the market price of the option.  The B-

S-M model for the price of a European call option, 

http://www.treasury.gov/
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              𝐶 = 𝑆𝑒−𝐷𝑇𝑁(𝑑1) − 𝑋𝑒−𝑟𝑇𝑁(𝑑2)            (1) 

              𝑑1 =
ln(

𝑆

𝑋
)+(𝑟−𝐷+0.5𝜎2)𝑇

𝜎√𝑇
 

              𝑑2 = 𝑑1 − 𝜎√𝑇 

where, 

 C = call option value 

S = price of underlying asset 

 X = exercise price of call option 

T = time to call option expiration 

 r = risk-free rate 

 D = continuous dividend yield on underlying asset 

 σ = volatility, or standard deviation of underlying asset return 

 N(d) = cumulative standard normal probability of d 

 

Fig. 1 shows S&P500 call option implied volatilities on November 16, 2022.  It implies that if 

market prices are the true measures of value, investors would have to use different measures of 

volatility for the underlying asset, when calculating B-S-M call option prices with different 

strikes.  This inconsistency is a shortcoming of the B-S-M model, since there is only one 

underlying asset, and its volatility should be the same for all strikes.  It is widely accepted that 

the B-S-M model provides a reasonably accurate measure of value for at the money options, so 

the B-S-M volatility implied by the market price of an at the money option on the S&P500 index, 

gives us a good way of divining investor perceptions of market volatility.  These perceptions can 
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change quickly, as shown by the precipitous decline in volatility from November 16, 2022, to 

July 19, 2023, during which time the volatility index, VIX, dropped from 24.39% to 13.64%. 

 

To model investor preferences, we use Power-Log utility functions (Kale [2006]), which are a 

variation of prospect theory (Kahneman and Tversky [1979], Tversky and Kahneman [1991]) 

that has been used to explain investor behavior.  Kale [2006], Kale and Sheth [2016], and Kale 

and Lim [2020] show that the Power-Log utility functions are very effective in asset allocation 

and portfolio selection applications.  They produce portfolios that conform closely to investor 

preferences for maximizing portfolio growth and controlling downside risk, and perform better 

than portfolio optimization using either mean-variance analysis, or power utility functions. 

 

To price in the money and out of the money call options on the S&P500 index, we treat a call 

option as an instrument for achieving equity exposure.  This equity exposure is not simply 

leveraged equity, but the returns generated by the call option are dependent on the returns 

generated by the S&P500 index.  To price the option, we find the call price that produces a 

portfolio consisting of the call option and a treasury, that has the same expected utility (Savage 

[1964], Von Neumann and Morgenstern [1944]) as an investment in the S&P500 index, which 

represents equity investment.  That still leaves us with an identification problem, since a range of 

call option prices and combinations of investment weights in the treasury-call portfolio will 

result in the same expected utility.  We solve this identification problem by using another 

element, that is the coin of the realm in options markets, namely volatility.  To price the call 

option uniquely, we match the volatility of the treasury-call portfolio to the volatility of the 

S&P500 index investment, in addition to matching their expected utilities. 
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Power-Log Utility Functions 

The following description of Power-Log utility functions is based on Kale [2006], Kale and 

Sheth [2016], and Kale and Lim [2020].  Power-Log utility functions start by incorporating the 

central idea of behavioral economics and prospect theory, that investors view gains and losses 

asymmetrically (Kahneman and Tversky [1979], Tversky and Kahneman’s [1991]), and then 

superimpose risk aversion across the entire range of returns so that Power-Log utility functions 

conform to the Friedman-Savage [1948] axioms for risk-averse utility functions.  Best and 

Grauer (2016 and 2017) show that prospect theory’s S-shaped utility function’s risk-seeking 

behavior on the downside results in optimal portfolios, “…that are extremely unstable over 

different decision horizons and with annual data are prone to risk bankruptcy.”  Taking bigger 

risks in an attempt to recoup losses, as implied by prospect theory, is behavior that can lead to 

ruin, and is not common among investors.   By replacing prospect theory’s risk-seeking behavior 

on the downside with risk-averse behavior, Power-Log utility functions convert prospect theory’s 

descriptive model of speculation, into a normative model for investment that conforms closely to 

investor preferences. 

 

A Power-Log utility function is defined as, 

    𝑈 = ln(1 + 𝑟)      for  𝑟 ≥ 0        (2) 

         =
1

𝛾
(1 + 𝑟)𝛾    for  𝑟 < 0         

where, 

r asset, or portfolio return 
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 downside power, less than or equal to 0 

 

Fig. 2 shows examples of Power-Log utility functions, where the utility for losses is modeled 

with a power utility function and the utility for gains is modeled with the log utility function.  

The log utility function, which is functionally equivalent to the Kelly criterion (Kelly [1956]), is 

well known for its portfolio growth-maximization property.  It is equivalent to a power utility 

function with power 0 (Grauer and Hakansson [1982]).  Selecting a downside power of zero for 

the Power-Log utility function is equivalent to using a log utility function for losses, which 

makes the entire utility function a log utility function.  Power-Log utility functions with more 

negative downside powers, such as -3 and -15, and so on, build in progressively larger penalties 

for losses, and thus provide a continuum of utility functions that accommodate the full range of 

investor preferences for controlling losses, while leaving the utility for gains unchanged in the 

form of the log utility function. 

 

S&P500 Index Returns 

We chose to use an empirical distribution of monthly S&P500 returns instead of assuming a 

theoretical distribution that tries to approximate the underlying distribution.  We start with 

seventy-two years of monthly price returns and total returns from 1950 through 2021, to ensure 

that the data includes bull markets, bear markets and flat markets, and includes several business 

cycles.  We use total returns to measure the return to equity, and price returns to estimate 

expiration values for the call options.  The 864 monthly return observations give us a well-

defined frequency distribution for the purposes of our option pricing model.  The data is from 

Morningstar’s Large Stock series, which tracks the S&P500 index. 
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Table 1 shows selected S&P500 index returns and summary statistics.  Fig. 3 shows the 

frequency distribution for the 1950-2021 history, highlighting the occasional large losses in 

equities, which lead to negative skewness in equity returns.  The negative skewness of the 

S&P500 returns deviates noticeably from the positive skewness of the lognormal distribution, 

that is often assumed for equity asset returns and underlies the B-S-M option pricing model.  To 

forecast S&P500 returns for the coming month, we incorporate the volatility of the S&P500 

index as perceived by traders and investors in the options market into the forecast of S&P500 

returns.  We adjust the historical monthly returns so that the volatility of the return forecast 

reflects the B-S-M implied volatility of the at the money call option on the S&P500 index, and 

leave the average return and shape of the distribution unchanged. 

 

The market data for options is from a snapshot of the Schwab website on November 16, 2022, at 

2:55 pm Eastern Standard Time in the US, as described above.  From the available options, we 

selected options that expire in 30 days on December 16, 2022.  The S&P500 index value at that 

time of the snapshot was 3,966.04, its dividend yield was 1.75%, and the one-month US treasury 

yield was 3.81% (www.treasury.gov).  For estimating market volatility, we chose the closest to 

the money call option with an exercise price of 3,965 as our approximation for the at the money 

call option.  It had, a bid of 106.00 and ask of 106.6, giving us a bid-ask midpoint of 106.30, that 

we use as our estimate of its market price.  This market price gave us an annual B-S-M implied 

volatility of 22.63%, which is less than the VIX of 24.39% at that time. 
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To create a forecast of S&P500 price returns for the coming month, we adjust the historical 

S&P500 monthly price returns so that the monthly return distribution has a volatility of 6.53% to 

correspond to the annual ATM implied volatility of 22.63%.  Similarly, we adjust the S&P500 

monthly total returns, accounting for the slightly higher volatility of total returns over price 

returns, to forecast total returns for the coming month with a volatility of 6.54%.  The average 

return and shape of the monthly return distributions remains unchanged. 

 

Market’s Downside Sensitivity 

To identify the downside power that corresponds to collective investor preferences in the 

S&P500 options market, we create a portfolio consisting of a one-month treasury and the ATM 

call option, such that volatility of this portfolio equals that of the S&P500 total returns index 

forecast.  For that we need a forecast of the ATM call option returns.  We use the S&P500 index 

value of 3,966.04, and the forecast of S&P500 monthly price returns, to forecast the S&P500 

index values on December 16, the option expiration date.  The ATM call option strike of 3,965 

and the forecast of S&P500 index values, in turn give us a forecast of the option expiration 

values shown in Table 2.  The 106.3 price of the ATM call option and the forecast of its 

expiration values, give us the ATM call return forecast shown in the last column of Table 2. 

 

The standard deviation of the monthly ATM call option return is 144.05%.  To match the 

standard deviation of 6.54% of S&P500 monthly total returns, the treasury-call portfolio requires 

an investment of 95.46% in the one-month treasury, which is riskless, and an investment of 

4.54% in the ATM call option.  With these investment weights, the distribution of ATM call 

option returns, and a monthly treasury yield of 0.31%, which corresponds to the annualized one-
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month treasury rate of 3.81%, we construct the monthly return distribution of the treasury-call 

portfolio. 

 

Once we have the return distribution for the volatility matched treasury-call portfolio, we use an 

iterative procedure for finding the downside power in the Power-Log utility function which gives 

us the same expected utilities for the treasury-call portfolio and the S&P500 index investment.  

At 2:55 pm Eastern Standard Time, on November 16, 2022, that turned out to be a downside 

power of -3.5.  This downside power represents the collective downside sensitivity of investors 

in the call options market at that time.  As market conditions change, this downside sensitivity 

will change as well. 

 

Call Option Prices 

The downside power of -3.5 gives us a well-defined Power-Log utility function, with which we 

can calculate expected utilities to price the ATM call for different S&P500 spot prices, and 

prices for in the money and out of the money call options for different strike prices. 

 

Fig. 4 shows the Power-Log Utility OPM prices for the ATM Call Option.  To calculate the call 

price for a given S&P500 index value, we use the forecast of the S&P500 price return 

distribution to forecast the S&P500 price distribution and corresponding exercise values for the 

call.  Next, we use an iterative procedure to find the call price such that resulting call return 

distribution produces a treasury-call portfolio that has the same volatility and expected utility as 

the S&P500 index investment. 
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For comparing the performance of Power-Log Utility OPM and B-S-M prices relative to market 

prices, we selected call options with substantial open interest, and strike prices from 3,500 to 

4,500, a range that is over 10% above and below the ATM strike.  For each call option we 

calculated the Power-Log Utility OPM price by using the procedure described in the paragraph 

above.  The call prices are shown in Table 3, along with B-S-M prices calculated with the ATM 

implied volatility.  For comparison, Table 3 also shows B-S-M prices using VIX in place of the 

ATM implied volatility.  The model prices are higher than market prices for out of the money 

call options, and lower than the market prices for in the money call options.  Fig. 5 shows the 

difference between model and market prices.  Table 3 and Fig. 5 show that Power-Log Utility 

OPM prices are closer to market prices than B-S-M prices calculated using ATM call implied 

volatility, except for the ATM strike of 3,965, where they are the same by design.  Also, except 

for the strike of 3,845, where the B-S-M price calculated with VIX equals the market price, and 

for a few strikes near it, the Power-Log Utility OPM prices are closer to market prices than B-S-

M with VIX prices.  The calculation of VIX appears to have effectively targeted the call option 

with strike 3,845 for the index calculation. 

 

Spot checking data for call options with 30 days to expiration in 2023, gave us results that are 

similar to those for the December 16, 2022, expiration, with Power-Log Utility OPM call prices 

that are closer to market prices than B-S-M prices.  The Power-Log Utility OPM displays 

consistently superior performance, in spite of the steep drop in the VIX from its November 16, 

2022, value of 24.39% to its July 19, 2023 value of 13.64%. 
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Put Option Prices 

We use put-call parity for European options to calculate the value of put options on the S&P500 

index, 

     𝑃 = 𝐶 + 𝑋𝑒−𝑟𝑇 − 𝑆𝑒−𝐷𝑇      (3) 

where the call price, C, is from the Power-Log Utility OPM.  Since the ATM put implied 

volatility of 22.24% at 2:55 pm Eastern Standard Time on November 16, 2022, was not identical 

to the ATM call implied volatility of 22.63%, we use the ATM put implied volatility for 

forecasting S&P500 returns, calculate Power-Log Utility OPM call option values as described in 

the sections above, and then use the call option values to calculate corresponding put values 

using put-call parity.  Fig. 6 shows the Power-Log Utility OPM put prices for the ATM option 

with strike price 3,965. 

To compare the performance of the Power-Log Utility OPM with the B-S-M model, we calculate 

put prices for selected strikes from 3,500 to 4,500.  The results are similar to those for call 

options.  Fig. 7 shows the difference between model prices and market prices.  It shows that 

Power-Log Utility OPM prices are closer to market prices than B-S-M prices calculated using 

ATM put implied volatility, except for the ATM strike of 3,965, where they are the same by 

design.  Also, except for the strike of 3,815, where the B-S-M price calculated with VIX equals 

the market price, and for a few strikes near it, the Power-Log Utility OPM prices are closer to 

market prices than B-S-M with VIX prices.  The VIX calculation appears to have effectively 

targeted the put option with strike 3,815. 

 

Spot checking data for put options with 30 days to expiration in 2023, gave us results that are 

similar to those for the December 16, 2022 expiration; Power-Log Utility OPM prices are closer 
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to market prices than B-S-M prices.  The Power-Log Utility OPM displays consistently superior 

performance for both call and put index options. 

 

Conclusion 

Option pricing models such as Black-Scholes (1973) and Merton (1973), do not incorporate any 

information about investor preferences, which can lead to wide discrepancies between the model 

prices and observed market prices.  The Power-Log Utility option pricing model incorporates 

investor preferences with a Power-Log utility function (Kale [2006]), which is a variation of 

prospect theory (Kahneman and Tversky [1979], Tversky and Kahneman [1991]), that converts 

prospect theory’s model of speculative behavior into a normative model for asset allocation, 

portfolio selection, and now option pricing.  To price a call option on the S&P500 index, we treat 

it as an instrument for achieving equity exposure and find the call price that produces a portfolio 

consisting of the call option and a treasury, that has the same volatility and expected utility as an 

investment in the S&P500 index.  To price a put option on the S&P500 index, we use put-call 

parity for European options and the corresponding call price from the Power-Log Utility OPM 

for a given strike.  Our method is fundamentally different from, and on a sounder theoretical 

footing, than other models that have been created to improve on B-S-M pricing, since they focus 

on improving the stochastic process that generates asset returns but ignore investor preferences.  

In addition, for pricing the options we use a very long history of monthly S&P500 returns, 864 

months, which incorporates the effects of jumps and stochastic volatility observed in equity 

returns. 
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For S&P500 index options with 30 days to expiration, the Power-Log Utility OPM prices are 

closer to market prices than Black-Scholes-Merton prices calculated with the ATM implied 

volatility, except for the ATM strike, where they are equal by design.  They are also closer to 

market prices than B-S-M prices calculated with VIX, except in the neighborhood of the strike 

that is effectively targeted for the VIX calculation. 

 

Like B-S-M, the Power-Log Utility OPM relies on the underlying asset’s volatility as an input.  

To calculate a B-S-M option price, the investor has to provide an estimate of that volatility for 

the life of the option, while the Power-Log Utility OPM, as described above, uses the ATM 

option implied volatility to price in the money and out of the money options.  If an investor has 

reason to believe that their own estimate of future underlying asset volatility is better than the 

ATM option implied volatility, then that estimate can be used in the Power-Log Utility OPM for 

pricing at the money, in the money and out of the money options. 
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Table 1 

S&P500 Index Monthly Returns, 1950-2021 (%) 

 

 Observation Month Price Total 

 Number   Return Return 

 1 1950-01 1.73 1.97 

 2 1950-02 1.00 1.99 

 3 1950-03 0.41 0.70 

 4 1950-04 4.51 4.86 

 5 1950-05 3.93 5.09 

     

 ⁞ ⁞ ⁞      ⁞      

     

 860 2021-08 2.90 3.04 

 861 2021-09 -4.76 -4.65 

 862 2021-10 6.91 7.01 

 863 2021-11 -0.83 -0.69 

 864 2021-12 4.36 4.48 

     

 Minimum  -21.76 -21.54 

 Maximum  16.30 16.81 

 Average  0.74 1.01 

 Std. Deviation  4.15 4.16 

 Skewness  -0.43 -0.43 

 Kurtosis  1.72 1.75 
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Table 2 

At The Money S&P500 Call Return Forecast 

 

 Observation S&P500  S&P500  ATM Call  ATM Call 

 Number Return  Price  Expiration  Return 

   Forecast (%)   Forecast   Value ($)   Forecast (%) 

 1 2.30  4,057.07  92.07  -13.39 

 2 1.14  4,011.35  46.35  -56.40 

 3 0.21  3,974.53  9.53  -91.04 

 4 6.67  4,230.46  265.46  149.73 

 5 5.75  4,194.16  229.16  115.58 

         

 ⁞ ⁞       ⁞       ⁞       ⁞      

         

 860 4.13  4,129.93  164.93  55.15 

 861 -7.90  3,652.59  0.00  -100.00 

 862 10.44  4,380.29  415.29  290.68 

 863 -1.74  3,897.23  0.00  -100.00 

 864 6.43  4,221.11  256.11  140.93 

         

 * S&P500 spot price: 3,966.04       

 * ATM  call  strike price: 3,965       
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Table 3 

S&P500 Call Option Prices ($) 

2:55 pm Eastern Standard Time, November 16, 2022 

 

 Strike  Market  P-L Utility  B-S-M Price  B-S-M Price 

     Price   OPM Price    with ATM-IV   with VIX 

 3,500  482.60  477.97  473.60  474.88 

 3,600  388.95  385.46  378.46  381.07 

 3,700  299.70  297.44  289.04  293.44 

 3,800  217.65  215.87  209.02  215.28 

 3,900  145.95  145.16  141.91  149.51 

 3,950  114.85  114.62  113.94  121.85 

 3,965  106.30  106.30  106.30  114.26 

 4,000  87.60  88.25  89.83  97.78 

 4,100  45.70  48.53  52.76  60.01 

 4,200  20.55  23.46  28.66  34.49 

 4,250  13.10  16.07  20.51  25.50 

 4,300  8.20  11.04  14.39  18.54 

 4,400  3.25  5.09  6.67  9.33 

 4,480  1.70  2.64  3.41  5.14 

 4,500  1.48  2.28  2.86  4.40 

          

 * ATM call strike price: 3,965     
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Fig. 1 

Black-Scholes-Merton Call Implied Volatility (%) 

2:55 pm Eastern Standard Time, November 16, 2022 
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Fig. 2 

Power-Log Utility Function with Downside Powers 0, -3 and -15 
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Fig. 3 

S&P500 Monthly Return, 1950-2021 
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Fig. 4 

Power-Log Utility OPM Prices for the ATM Call Option ($) 

2:55 pm Eastern Standard Time, November 16, 2022 
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Fig. 5 

S&P500 Call Option Price Differences from Market ($) 

2:55 pm Eastern Standard Time, November 16, 2022 
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Fig. 6 

Power-Log Utility OPM Prices for the ATM Put Option ($) 

2:55 pm Eastern Standard Time, November 16, 2022 
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Fig. 7 

S&P500 Put Option Price Differences from Market ($) 

2:55 pm Eastern Standard Time, November 16, 2022 
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